

Tetrahedron: Asymmetry 10 (1999) 4047–4056

Rhodium-catalyzed asymmetric 1,4-addition of arylboron reagents to α , β -unsaturated esters

Yoshiaki Takaya, Taichi Senda, Hiroaki Kurushima, Masamichi Ogasawara and Tamio Hayashi *

Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan Received 14 September 1999; accepted 16 September 1999

Abstract

Reaction of arylboron reagents, arylboronic acids or arylborates, which are readily accessible by lithiation of aryl bromides followed by treatment with trimethoxyborane, with α,β -unsaturated esters in the presence of rhodium/(S)-binap catalyst proceeded with high enantioselectivity to give high yields of optically active β -aryl esters of up to 98% ee. The enantioselectivity depends on the steric bulkiness of the ester moiety. © 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

The conjugate addition of organometallic reagents to α,β -unsaturated esters is one of the most useful processes for carbon–carbon bond formation giving β -substituted esters which are versatile synthons to further organic transformations. Although considerable efforts have been made to develop asymmetric synthesis by conjugate addition reactions, 1,2 only a few successful examples have been reported on the reaction by asymmetric catalysis. In 1997, Miyaura et al. showed that organoboronic acids could be used for conjugate addition to α,β -unsaturated ketones under the catalysis by a rhodium(I)–phosphine complex in an aqueous solution. Based on this finding, we have succeeded in applying the rhodium-catalyzed reaction to catalytic asymmetric synthesis by carrying out the reaction in the presence of Rh(acac)(C₂H₄)₂/(S)-binap as a catalyst in dioxane:H₂O (10:1) at 100°C. We have also reported the successful application of 2-alkenyl-1,3-2-benzodioxaboroles, readily accessible by hydroboration of alkynes with catecholborane, to the catalytic asymmetric 1,4-addition. Very recently, we have developed a new one-pot reaction system starting from aryl bromides, which involves lithium arylborates generated in situ by lithiation of aryl bromides followed by treatment of the resulting aryllithiums with trimethoxyborane. The 1,4-addition of the arylborates to α,β -unsaturated ketones usually proceeds in

^{*} Corresponding author. Fax: +81-75-753-3988; e-mail: thayashi@kuchem.kyoto-u.ac.jp

higher yields than that of arylboronic acids. Here we report the application of the rhodium-catalyzed asymmetric 1,4-addition to α,β -unsaturated esters.

2. Results and discussion

We started our studies on the catalytic asymmetric 1,4-addition to α,β -unsaturated esters with the phenylation of (E)-2-hexenoate esters 1a-1d (Scheme 1). The reaction of methyl ester 1a with phenylboronic acid (5 equiv. to ester) in the presence of 3 mol% of Rh(acac)(C₂H₄)₂/(S)-binap in dioxane:H₂O (10:1) at 100°C for 3 h (method A) 5 gave a 94% yield of methyl 3-phenylhexanoate (3am) which is 86% enantiomerically pure (entry 1 in Table 1). Under the same reaction conditions, ethyl ester 1b gave a quantitative yield of the corresponding phenylation product 3bm, but the yields were much lower in the reaction of isopropyl ester 1c (42% yield) and tert-butyl ester 1d (21% yield) (entries 5 and 7). The low yield is ascribed to the competing hydrolysis of the boronic acid giving benzene before completion of the rhodium-catalyzed 1,4-addition. The yields were greatly improved by use of the new one-pot method. Thus, the reaction of the tert-butyl ester 1d with lithium phenylborate (2.5 equiv. to ester) generated in situ from bromobenzene, n-butyllithium and trimethoxyborane in the presence of 3 mol% of Rh(acac)(C₂H₄)₂/(S)-binap and 1 equiv. (to phenylborate) of water in dioxane at 100°C for 3 h (method B)⁷ gave a 92% yield of tert-butyl 3-phenylhexanoate **3dm** (entry 8). It was found that the enantioselectivity increases as the steric bulkiness of the ester moiety increases. The enantiomeric purities of the phenylation products are 89%, 91%, 95%, and 96% ee for methyl 3am, ethyl 3bm, isopropyl 3cm and tert-butyl 3dm esters, respectively (entries 2, 4, 6 and 8). Interestingly, the phenylation of ester 1d containing 3% of the (Z)-isomer gave 3dm of significantly lower enantiomeric purity (93%) ee, entry 9), suggesting that asymmetric phenylation of the (Z)-isomer gave the product which has an absolute configuration opposite to that obtained from the (E)-isomer. Several aryl groups, 4-ClC₆H₄ 2n, 4-MeC₆H₄ 2o, 4-CF₃C₆H₄ 2p, 3-MeOC₆H₄ 2q, and 2-naphthyl 2r, were also introduced into α,β unsaturated ester 1c with high enantioselectivity, ranging between 93% and 97% ee, in high yields by method B (entries 10-14).

$$\begin{array}{c} O \\ O \\ OR^1 \end{array} + \begin{array}{c} ArB(OH)_2 \\ or \\ Li^{+}[ArB(OMe)_3]^{-} \end{array} & \begin{array}{c} Rh(I)/(S)\text{-binap} \\ (3 \text{ mol }\%) \end{array} \\ \begin{array}{c} \text{dioxane/H}_2O \\ 100 \text{ °C, 3 h} \end{array} \\ \begin{array}{c} \textbf{1a: R}^1 = Me \\ \textbf{1b: R}^1 = Et \\ \textbf{2n: Ar} = 4\text{-CIC}_6H_4 \\ \textbf{1c: R}^1 = i\text{-Pr} \\ \textbf{2o: Ar} = 4\text{-MeC}_6H_4 \\ \textbf{1d: R}^1 = t\text{-Bu} \end{array} & \begin{array}{c} \textbf{2p: Ar} = 4\text{-CF}_3C_6H_4 \\ \textbf{2q: Ar} = 3\text{-MeOC}_6H_4 \\ \textbf{2r: Ar} = 2\text{-naphthyl} \end{array}$$

Scheme 1.

The reaction of isopropyl 4-methyl-2-pentenoate **1e** proceeded with the highest enantioselectivity (98% ee), though the chemical yield was somewhat lower (entry 15). The absolute configuration of isopropyl esters **3em** and **3fm** was determined by hydrolysis to known β -phenyl substituted carboxylic acids **4e** and **4f**, respectively (Scheme 2). A sample of (–)-**3em** ($[\alpha]_D^{20}$ –23 (c 1.19, chloroform)) was hydrolyzed (40% KOH/methanol) to give (S)-(–)-3-phenyl-4-methylpentanoic acid **4e** ($[\alpha]_D^{20}$ –38 (c 0.65, benzene))⁸ in 90% yield. Similarly, (R)-(–)-3-phenylheptanoic acid **4f** ($[\alpha]_D^{20}$ –32 (c 0.81, benzene))⁸ was obtained quantitatively from (–)-**3fm** ($[\alpha]_D^{20}$ –8.3 (c 0.92, chloroform)).

	ester	Ar		yield (%) ^c	$\% \mathrm{ee}^d$	$[\alpha]_{D^{20}}$
entry	1	2	methodb	of 3	of 3	(c in CHCl ₃)
1	(E)- n -PrCH=CHCOOMe (1a)	Ph (2m)	Α	94 (3am)	86	
2	(E)- n -PrCH=CHCOOMe $(1a)$	Ph (2m)	В	>99 (3am)	89	-20 (0.90)
3	(E)- n -PrCH=CHCOOEt $(1b)$	Ph (2m)	Α	>99 (3bm)	90	
4	(E)- n -PrCH=CHCOOEt $(1b)$	Ph (2m)	В	>99 (3bm)	91	-18 (0.95)
5	(E)- n -PrCH=CHCOOPr- i (1c)	Ph (2m)	Α	42 (3cm)	94	
6	(E)- n -PrCH=CHCOOPr- i (1c)	Ph (2m)	В	96 (3cm)	95	-18 (1.09)
7	(E)- n -PrCH=CHCOOBu- t (1d)	Ph (2m)	Α	21 (3dm)	95	
8	(E)- n -PrCH=CHCOOBu- t (1d)	Ph (2m)	В	92 (3dm)	96	-15 (0.97)
9e	(E)- n -PrCH=CHCOOBu- t (1d)	Ph (2m)	В	86 (3dm)	93	
10	(E)- n -PrCH=CHCOOPr- i (1c)	$4-ClC_6H_4$ (2n)	В	95 (3cn)	97	-18 (0.93)
11	(E)- n -PrCH=CHCOOPr- i (1c)	$4-MeC_6H_4$ (20)	В	88 (3co)	97	-19 (1.22)
12	(E)- n -PrCH=CHCOOPr- i (1c)	$4-CF_3C_6H_4$ (2p)	В	98 (3cp)	96	-14 (1.00)
13	(E)- n -PrCH=CHCOOPr- i (1c)	$3-MeOC_6H_4$ (2q)	В	83 (3cq)	94	-13 (1.14)
14	(E)- n -PrCH=CHCOOPr- i (1c)	2-naphthyl (2r)	В	96 (3cr)	93	-16 (0.94)
15	(E)-i-PrCH=CHCOOPr-i (1e)	Ph (2m)	В	64 (3em)	98 (S)	f -23 (1.19)
16	(E)- n -BuCH=CHCOOPr- i (1f)	Ph (2m)	В	91 (3fm)	95 (R)	f -8.3 (0.92)

Table 1 Rhodium-catalyzed asymmetric arylation of α,β -unsaturated esters $\mathbf{1}^a$

 a The reactions were carried out in dioxane/H₂O at 100 °C for 3 h with arylboronic acids or arylborates generated *in situ*, in the presence of 3 mol % of the catalyst generated from Rh(acac)(C₂H₄)₂ and (S)-binap. b Method A employs arylboronic acid (5 equiv to 1) in dioxane/H₂O (10/1); method B employs arylborate (2.5 equiv to 1) generated from aryl bromide, n-butyllithium and trimethoxyborane in the presence of 1 equiv (to arylborate) of H₂O. c Isolated yield by silica gel chromatography. d Determined by HPLC analysis with chiral stationary phase columns: Daicel Chiralcel OD-H (3am, 3bm) (eluent, hexane/2-propanol = 90/10), OD-H (3cm, 3cn, 3cp, 3cq, 3dm, 3em, 3fm) (eluent, hexane/2-propanol = 200/1), OJ (3co, 3cr) (eluent, hexane/2-propanol = 100/1. e Used ester (1d) was the mixture of E/Z (97/3). f See text.

Scheme 2.

The asymmetric arylation was also successful for cyclic α , β -unsaturated esters (Scheme 3, Table 2). Studies on the reaction conditions in the asymmetric phenylation of 5,6-dihydro-2H-pyran-2-one 5a revealed that method A is much better for this reaction than method B with respect to the chemical yield. Thus, the reaction of 5a with phenylboronic acid (method A) proceeded smoothly to give a 94% yield of phenylated lactone (S)-6am⁹ of 98% ee (entry 1), while the reaction with phenylborate (method B) gave only a 38% yield of 6am (entry 2). This is in striking contrast to the reaction of linear esters where method B gave higher yields of the phenylation products than method A. Several aryl groups were also introduced into 5a with high enantioselectivity in high yields by method A to give arylated lactones

6am–6ar of over 97% ee (entries 3–7). The enantioselectivity was also high $(96\% \text{ ee } (S))^9$ for 2(5H)-furanone **5b**, though neither method A nor method B gave a sufficiently high yield. At this moment, we cannot rationalize the difference of the reactivity between linear esters and cyclic esters.

Scheme 3.

Although the catalytic cycle of the rhodium-catalyzed 1,4-addition has not been established, we believe that it involves the insertion of a carbon–carbon double bond into a rhodium–aryl bond as a key step. The absolute configurations of the 1,4-addition products obtained with the (S)-binap/rhodium catalyst show that α,β -unsaturated esters underwent the arylation on their αsi face irrespective of the E,Z geometry of the double bond (Scheme 4). Thus, an aryl-rhodium species coordinated with (S)-binap, which has an open space at the lower part of the vacant coordination site, attacks linear esters on their αsi face to give the (S)-isomer for R^2 =i-Pr (S=i-Pr (

Table 2 Rhodium-catalyzed asymmetric arylation of cyclic esters $\mathbf{5}^a$

entry	ester 5	Ar 2	$method^b$	yield (%) ^c of 6	% ee ^d of 6	$[\alpha]_D^{20}$ (c in CHCl ₃)
1	5a	Ph (2m)	Α	94 (6am)	98 (S)e	+4.0 (2.70)
2	5a	Ph (2m)	В	38 (6am)	98 $(S)^{e}$	
3	5a	$4-ClC_6H_4$ (2n)	Α	95 (6an)	97	+8.4 (1.38)
4	5a	$4-MeC_6H_4$ (20)	Α	91 (6ao)	97	+6.3 (1.56)
5	5a	$4-CF_3C_6H_4$ (2p)	Α	75 (6ap)	97	+3.5 (0.85)
6	5a	$3-MeOC_6H_4$ (2q)	Α	91 (6aq)	98	+7.2 (1.12)
7	5a	2-naphthyl (2r)	Α	93 (6ar)	98	+21 (0.98)
8	5 b	Ph (2m)	Α	33 (6bm)	96 $(S)^{e}$	+46 (0.95)

^a The reactions were carried out in dioxane/H₂O at 100 °C for 3 h with arylboronic acids or arylborates generated *in situ*, in the presence of 3 mol % of the catalyst generated from Rh(acac)(C₂H₄)₂ and (S)-binap. ^b Method A employs arylboronic acid (5 equiv to 1) in dioxane/H₂O (10/1); method B employs arylborate (2.5 equiv to 1) generated from aryl bromide, n-butyllithium and trimethoxyborane in the presence of 1 equiv (to arylborate) of H₂O. ^c Isolated yield by silica gel chromatography. ^d Determined by HPLC analysis with chiral stationary phase column: Daicel Chiralcel OG (6am, 6an, 6ao, 6ap, 6aq, 6ar) (eluent, hexane/2-propanol = 80/20), OG (6bm) (eluent, hexane/2-propanol = 90/10). ^e See ref. 7.

not by the steric bulkiness of the β -substituents. This is consistent with the results that sterically more bulky ester groups brought about higher enantioselectivity.

PhrRh
$$\alpha$$
H COOR1

 α -si face

 α -si face

Scheme 4. The binaphthylene moiety in (S)-binap is omitted for clarity

In summary, we have shown that the rhodium-catalyzed asymmetric 1,4-addition of arylboron reagents can be successfully applied to α,β -unsaturated esters. The enantioselectivity was high, usually over 95% ee, for both linear and cyclic esters. High chemical yields were attained by use of either arylboronic acids (method A) or arylborates (method B) depending on the structure of the esters.

3. Experimental

3.1. General

All manipulations were carried out under a nitrogen atmosphere. Nitrogen gas was dried by passage through P_2O_5 . Optical rotations were measured with a JASCO DIP-370 polarimeter. NMR spectra were recorded on a JEOL JNM LA500 spectrometer (500 MHz for 1H and 125 MHz for ^{13}C). Chemical shifts are reported in δ ppm referenced to an internal tetramethylsilane standard for 1H NMR and residual chloroform (δ 77.0) for ^{13}C . HPLC analysis was performed on a Shimadzu LC-9A and a JASCO PU-980, with a JASCO UV-970 UV detector, liquid chromatographic system with chiral stationary phase columns, Daicel Chemical Co., Ltd, Chiralcel OD-H, OJ and OG.

3.2. Materials

1,4-Dioxane and diethyl ether were distilled from sodium benzophenone ketyl under nitrogen. Rhodium complex $Rh(acac)(C_2H_4)_2^{11}$ and the chiral phosphine ligand (S)-binap¹² were prepared according to the literature. α , β -Unsaturated esters **1a–1f** were obtained by esterification of *trans*-2-hexenoic acid, 4-methyl-*trans*-2-pentenoic acid, and *trans*-2-heptenoic acid with corresponding alcohols, respectively. 5,6-Dihydro-2*H*-pyran-2-one **5a** and 2(5*H*)-furanone **5b** were purchased from Aldrich Chemical Company Inc., phenylboronic acid **2m** was purchased from Tokyo Kasei Kogyo Co., Ltd, hexane solution of *n*-butyllithium was purchased from Kanto Chemical Co., Inc., and used without further purification.

Several arylboronic acids (2n–2r) were synthesized from the corresponding aryl bromides in a similar manner to the reported procedures. ¹³ 4-Bromochlorobenzene (for 2n) and 4-bromobenzotrifluoride (for 2p) were purchased from Aldrich Chemical Company Inc., 4-bromotoluene (for 2o) was purchased from Wako Pure Chemical Industries Ltd, 3-bromoanisole (for 2q) and 2-bromonaphthalene (for 2r) were purchased from Tokyo Kasei Kogyo Co., Ltd, and used without further purification.

3.3. Method A

A typical procedure is given for the preparation of 4-(phenyl)tetrahydro-2H-pyran-2-one (6am) (entry 1 in Table 2): 1,4-Dioxane (2.0 mL) was added to a flask charged with Rh(acac)(C₂H₄)₂ (3.1 mg, 12 µmol), (S)-binap (9.0 mg, 14 µmol), and phenylboronic acid (244 mg, 2.00 mmol; 2m) and flushed with nitrogen, which was followed by addition of water (0.2 mL) and 5,6-dihydro-2H-pyran-2-one (39 mg, 0.40 mmol; 5a). The resulting mixture was then stirred at 100°C for 3 h. After evaporation of the solvent, the residue was dissolved in ethyl acetate. The solution was washed with saturated aqueous sodium bicarbonate and dried over anhydrous Na₂SO₄. Chromatography on silica gel (hexane:AcOEt 1:1) gave 4-(phenyl)tetrahydro-2H-pyran-2-one (66 mg, 94% yield; 6am) as a colorless oil.

3.4. Method B

A typical procedure is given for the preparation of isopropyl 3-phenylhexanoate (**3cm**) (entry 6 in Table 1): Under a nitrogen atmosphere, a hexane solution of butyllithium (650 μ L, 1.00 mmol) was added to bromobenzene (157 mg, 1.00 mmol; **2m**) in Et₂O (0.5 mL) at 0°C. The mixture was stirred at room temperature for 1 h and cooled to -78° C. Trimethoxyborane (104 mg, 1.00 mmol) was added to the reaction mixture. The mixture was stirred at -78° C for 30 min and at room temperature for 1 h. To the mixture were added H₂O (18 mg, 1.00 mmol), isopropyl *trans*-2-hexenoate (62 mg, 0.40 mmol; **1c**) and a solution of Rh(acac)(C₂H₄)₄ (3.1 mg, 12 μ mol) and (*S*)-binap (9.0 mg, 14 μ mol) in dioxane (2.0 mL). The whole mixture was heated at 100°C for 3 h. Addition of saturated aqueous sodium bicarbonate followed by ethyl acetate extraction and silica gel chromatography (hexane:ethyl acetate 10:1) gave 90 mg (96% yield) of isopropyl 3-phenylhexanoate **3cm** as a colorless oil.

3.5. Methyl 3-phenylhexanoate 3am

¹H NMR (CDCl₃) δ 0.85 (t, J=7.4 Hz, 3H), 1.11–1.26 (m, 2H), 1.56–1.65 (m, 2H), 2.57 (dd, J=15.2 and 8.3 Hz, 1H), 2.62 (dd, J=15.2 and 7.4 Hz, 1H), 3.10 (br quint, J=7.5Hz, 1H), 3.57 (s, 3H), 7.16–7.20 (m, 3H), 7.28 (t, J=7.4 Hz, 2H); ¹³C NMR (CDCl₃) δ 13.96, 20.47, 38.39, 41.65, 41.93, 51.43, 126.39, 127.42, 128.40, 144.15, 172.93. Anal. calcd for C₁₃H₁₈O₂: C, 75.69; H, 8.80. Found: C, 75.62; H, 8.67.

3.6. Ethyl 3-phenylhexanoate 3bm

¹H NMR (CDCl₃) δ 0.85 (t, J=7.3 Hz, 3H), 1.12 (t, J=7.4 Hz, 3H), 1.14–1.22 (m, 2H), 1.56–1.66 (m, 2H), 2.54 (dd, J=15.2 and 8.3 Hz, 1H), 2.61 (dd, J=15.2 and 7.4 Hz, 1H), 3.10 (br quint, J=7.6 Hz, 1H), 4.02 (q, J=7.3 Hz, 2H), 7.17–7.19 (m, 3H), 7.27 (t, J=7.8 Hz, 2H); ¹³C NMR (CDCl₃) δ 13.90, 14.06, 20.40, 38.40, 41.84, 41.97, 60.11, 126.30, 127.44, 128.29, 144.13, 172.41. Anal. calcd for C₁₄H₂₀O₂: C, 76.33; H, 9.15. Found: C, 76.61; H, 9.38.

3.7. Isopropyl 3-phenylhexanoate 3cm

¹H NMR (CDCl₃) δ 0.85 (t, J=7.3 Hz, 3H), 1.05 (d, J=6.4 Hz, 3H), 1.13 (d, J=6.4 Hz, 3H), 1.15–1.22 (m, 2H), 1.57–1.62 (m, 2H), 2.52 (dd, J=14.7 and 8.3 Hz, 1H), 2.58 (dd, J=14.7 and 7.4 Hz, 1H), 3.08 (br quint, J=7.5 Hz, 1H), 4.89 (sept, J=6.4 Hz, 1H), 7.17–7.19 (m, 3H), 7.27 (t, J=7.9 Hz, 2H); ¹³C NMR (CDCl₃) δ 13.92, 20.39, 21.60, 21.68, 38.49, 42.11, 42.13, 67.37, 126.28, 127.51, 128.25, 144.10, 171.96. Anal. calcd for C₁₅H₂₂O₂: C, 76.88; H, 9.46. Found: C, 77.11; H, 9.70.

3.8. Isopropyl 3-(4-chlorophenyl)hexanoate 3cn

¹H NMR (CDCl₃) δ 0.85 (t, J=7.4 Hz, 3H), 1.06 (d, J=6.4 Hz, 3H), 1.13 (d, J=6.4 Hz, 3H), 1.13–1.19 (m, 2H), 1.51–1.64 (m, 2H), 2.48 (dd, J=15.0 and 8.8 Hz, 1H), 2.57 (dd, J=15.0 and 6.6 Hz, 1H), 3.07 (tt, J=8.8 and 6.1 Hz, 1H), 4.89 (sept, J=6.4 Hz, 1H), 7.11 (d, J=8.6 Hz, 2H), 7.25 (d, J=8.6 Hz, 2H); ¹³C NMR (CDCl₃) δ 13.86, 20.33, 21.63, 21.70, 38.45, 41.53, 41.97, 67.56, 128.42, 128.89, 131.96, 142.63, 171.65. Anal. calcd for C₁₅H₂₁ClO₂: C, 67.03; H, 7.88; Cl, 13.19. Found: C, 67.29; H, 7.86; Cl, 13.03.

3.9. Isopropyl 3-(4-methylphenyl)hexanoate 3co

¹H NMR (CDCl₃) δ 0.84 (t, J=7.4 Hz, 3H), 1.07 (d, J=6.4 Hz, 3H), 1.14 (d, J=6.4 Hz, 3H), 1.14–1.21 (m, 2H), 1.53–1.64 (m, 2H), 2.30 (s, 3H), 2.49 (dd, J=14.7 and 8.3 Hz, 1H), 2.56 (dd, J=14.7 and 7.4 Hz, 1H), 3.05 (br quint, J=7.5 Hz, 1H), 4.90 (sept, J=6.4 Hz, 1H), 7.05–7.09 (m, 4H); ¹³C NMR (CDCl₃) δ 13.96, 20.45, 21.00, 21.67, 21.76, 38.55, 41.71, 42.28, 67.38, 127.41, 128.99, 135.72, 141.13, 172.07. Anal. calcd for C₁₆H₂₄O₂: C, 77.38; H, 9.74. Found: C, 77.40; H, 9.87.

3.10. Isopropyl 3-(4-trifluoromethylphenyl)hexanoate 3cp

¹H NMR (CDCl₃) δ 0.86 (t, J=7.4 Hz, 3H), 1.04 (d, J=6.4 Hz, 3H), 1.12 (d, J=6.4 Hz, 3H), 1.14–1.26 (m, 2H), 1.56–1.68 (m, 2H), 2.52 (dd, J=15.2 and 8.8 Hz, 1H), 2.61 (dd, J=15.2 and 6.4 Hz, 1H), 3.16 (tt, J=8.8 and 6.4 Hz, 1H), 4.88 (sept, J=6.4 Hz, 1H), 7.29 (d, J=8.3 Hz, 2H), 7.54 (d, J=8.3 Hz, 2H); ¹³C NMR (CDCl₃) δ 13.89, 20.40, 21.62, 21.72, 38.41, 41.81, 42.05, 67.72, 124.33 (q, J=270.9 Hz), 125.32 (q, J=4.1 Hz), 127.97, 128.79 (q, J=32.0 Hz), 148.42, 171.54. Anal. calcd for C₁₆H₂₁F₃O₂: C, 63.56; H, 7.00; F, 18.85. Found: C, 63.82; H, 7.01; F, 18.73.

3.11. Isopropyl 3-(3-methoxyphenyl)hexanoate 3cq

¹H NMR (CDCl₃) δ 0.85 (t, J=7.4 Hz, 3H), 1.08 (d, J=6.1 Hz, 3H), 1.15 (d, J=6.1 Hz, 3H), 1.15–1.24 (m, 2H), 1.56–1.61 (m, 2H), 2.51 (dd, J=15.0 and 8.1 Hz, 1H), 2.56 (dd, J=15.0 and 7.3 Hz, 1H), 3.06 (br quint, J=7.6 Hz, 1H), 3.79 (s, 3H), 4.91 (sept, J=6.1 Hz, 1H), 6.72–6.74 (m, 2H), 6.78 (d, J=7.6 Hz, 1H), 7.17–7.21 (m, 1H); ¹³C NMR (CDCl₃) δ 13.98, 20.45, 21.68, 21.76, 38.45, 42.13, 42.19, 55.14, 67.44, 111.46, 113.53, 120.00, 129.25, 145.94, 159.63, 171.97. Anal. calcd for C₁₆H₂₄O₃: C, 72.69; H, 9.15. Found: C, 72.87; H, 9.38.

3.12. Isopropyl 3-(2-naphthyl)hexanoate 3cr

¹H NMR (CDCl₃) δ 0.86 (t, J=7.4 Hz, 3H), 1.01 (d, J=6.4 Hz, 3H), 1.11 (d, J=6.4 Hz, 3H), 1.13–1.26 (m, 2H), 1.69 (q, J=7.6 Hz, 2H), 2.62 (dd, J=14.9 and 8.3 Hz, 1H), 2.67 (dd, J=14.9 and 7.1 Hz, 1H),

3.27 (br quint, J=7.5 Hz, 1H), 4.87 (sept, J=6.4 Hz, 1H), 7.34 (dd, J=8.3 and 1.7 Hz, 1H), 7.43 (dquint, J=7.8 and 2.0 Hz, 2H), 7.62 (d, J=1.5 Hz, 1H), 7.77–7.80 (m, 3H); ¹³C NMR (CDCl₃) δ 13.97, 20.50, 21.64, 21.75, 38.40, 42.16, 42.25, 67.49, 125.28, 125.79, 125.87, 126.24, 127.59, 127.61, 128.01, 132.41, 133.51, 141.63, 171.95. Anal. calcd for $C_{19}H_{24}O_2$: C, 80.24; H, 8.51. Found: C, 80.19; H, 8.61.

3.13. tert-Butyl 3-phenylhexanoate 3dm

 1 H NMR (CDCl₃) δ 0.85 (t, J=7.3 Hz, 3H), 1.14–1.24 (m, 2H), 1.30 (s, 9H), 1.53–1.64 (m, 2H), 2.46 (dd, J=15.2 and 8.8 Hz, 1H), 2.53 (dd, J=15.2 and 6.9 Hz, 1H), 3.04 (br quint, J=7.6 Hz, 1H), 7.15–7.18 (m, 3H), 7.27 (t, J=7.8 Hz, 2H); 13 C NMR (CDCl₃) δ 13.98, 20.45, 27.94, 38.66, 42.30, 43.00, 80.10, 126.24, 127.64, 128.23, 144.35, 171.83. Anal. calcd for $C_{16}H_{24}O_2$: C, 77.38; H, 9.74. Found: C, 77.41; H, 9.90.

3.14. Isopropyl 3-phenyl-4-methylpentanoate 3em

¹H NMR (CDCl₃) δ 0.76 (d, J=6.9 Hz, 3H), 0.95 (d, J=6.9 Hz, 3H), 0.97 (d, J=6.4 Hz, 3H), 1.05 (d, J=6.4 Hz, 3H), 1.84 (oct, J=6.9 Hz, 1H), 2.55 (dd, J=14.7 and 10.3 Hz, 1H), 2.73 (dd, J=14.7 and 5.4 Hz, 1H), 2.84–2.89 (m, 1H), 4.81 (sept, J=6.4 Hz, 1H), 7.13–7.18 (m, 3H), 7.25 (t, J=7.9 Hz, 2H); ¹³C NMR (CDCl₃) δ 20.39, 20.60, 21.56, 21.60, 33.29, 38.95, 49.17, 67.31, 126.25, 127.97, 128.37, 142.87, 172.35. Anal. calcd for C₁₅H₂₂O₂: C, 76.88; H, 9.46. Found: C, 76.92; H, 9.35.

3.15. Isopropyl 3-phenylheptanoate 3fm

 1 H NMR (CDCl₃) δ 0.83 (t, J=7.4 Hz, 3H), 1.05 (d, J=6.4 Hz, 3H), 1.07–1.30 (m, 4H), 1.13 (d, J=6.4 Hz, 3H), 1.57–1.67 (m, 2H), 2.52 (dd, J=14.7 and 8.3 Hz, 1H), 2.59 (dd, J=14.7 and 7.1 Hz, 1H), 3.06 (br quint, J=7.6 Hz, 1H), 4.89 (sept, J=6.4 Hz, 1H), 7.17–7.20 (m, 3H), 7.27 (t, J=8.1 Hz, 2H); 13 C NMR (CDCl₃) δ 13.93, 21.65, 21.73, 22.60, 29.51, 36.02, 42.21, 42.42, 67.40, 126.32, 127.55, 128.30, 144.23, 172.00. Anal. calcd for C₁₆H₂₄O₂: C, 77.38; H, 9.74. Found: C, 77.68; H, 9.82.

3.16. 4-(Phenyl)tetrahydro-2H-pyran-2-one 6am

¹H NMR (CDCl₃) δ 2.00–2.08 (m, 1H), 2.15–2.21 (m, 1H), 2.63 (dd, J=17.6 and 10.8 Hz, 1H), 2.91 (ddd, J=17.6, 5.9 and 1.5 Hz, 1H), 3.24 (m, 1H), 4.39 (dt, J=11.1 and 3.7 Hz, 1H), 4.50 (ddd, J=11.1, 4.9, 3.9 Hz, 1H), 7.21 (d, J=7.3 Hz, 2H), 7.27 (t, J=7.4 Hz, 1H), 7.36 (t, J=7.3 Hz, 2H); ¹³C NMR (CDCl₃) δ 30.31, 37.44, 37.50, 68.62, 126.47, 127.23, 129.00, 142.82, 170.66.

3.17. 4-(4-Chlorophenyl)tetrahydro-2H-pyran-2-one 6an

 1 H NMR (CDCl₃) δ 1.97–2.05 (m, 1H), 2.14–2.20 (m, 1H), 2.59 (dd, J=17.7 and 10.8 Hz, 1H), 2.91 (ddd, J=17.7, 5.9 and 1.5 Hz, 1H), 3.23 (m, 1H), 4.39 (dt, J=11.3 and 3.4 Hz, 1H), 4.50 (ddd, J=11.3, 4.9, 3.9 Hz, 1H), 7.15 (d, J=8.3 Hz, 2H), 7.33 (d, J=8.3 Hz, 2H); 13 C NMR (CDCl₃) δ 30.19, 36.90, 37.39, 68.49, 127.85, 129.12, 132.99, 141.26, 170.28.

3.18. 4-(4-Methylphenyl)tetrahydro-2H-pyran-2-one **6ao**

¹H NMR (CDCl₃) δ 1.97–2.05 (m, 1H), 2.13–2.18 (m, 1H), 2.34 (s, 3H), 2.62 (dd, J=17.6 and 10.8 Hz, 1H), 2.90 (ddd, J=17.6, 5.9 and 1.5 Hz, 1H), 3.20 (m, 1H), 4.38 (dt, J=11.3 and 4.0 Hz, 1H), 4.49 (ddd, J=11.3, 4.9, 3.9 Hz, 1H), 7.10 (d, J=8.3 Hz, 2H), 7.16 (d, J=8.3 Hz, 2H); ¹³C NMR (CDCl₃) δ 20.99, 30.45, 37.07, 37.60, 68.66, 126.33, 129.63, 136.84, 139.96, 170.65. Anal. calcd for C₁₂H₁₄O₂: C, 75.76; H, 7.42. Found: C, 76.05; H, 7.70.

3.19. 4-(4-Trifluoromethylphenyl)tetrahydro-2H-pyran-2-one 6ap

¹H NMR (CDCl₃) δ 2.03–2.11 (m, 1H), 2.18–2.24 (m, 1H), 2.63 (dd, J=17.6 and 10.5 Hz, 1H), 2.94 (ddd, J=17.6, 6.2 and 1.7 Hz, 1H), 3.33 (m, 1H), 4.42 (dt, J=11.5 and 3.7 Hz, 1H), 4.53 (ddd, J=11.5, 4.9 and 3.7 Hz, 1H), 7.35 (d, J=8.1 Hz, 2H), 7.63 (d, J=8.1 Hz, 2H); ¹³C NMR (CDCl₃) δ 30.06, 37.18, 37.38, 68.45, 124.00 (q, J=270.9 Hz), 126.02 (q, J=4.1 Hz), 126.95, 129.67 (q, J=32.0 Hz), 146.73, 170.05. Anal. calcd for C₁₂H₁₁F₃O₂: C, 59.02; H, 4.54; F, 23.34. Found: C, 59.31; H, 4.81; F, 22.69.

3.20. 4-(3-Methoxyphenyl)tetrahydro-2H-pyran-2-one 6aq

¹H NMR (CDCl₃) δ 1.98–2.06 (m, 1H), 2.14–2.19 (m, 1H), 2.62 (dd, J=17.6 and 10.8 Hz, 1H), 2.90 (ddd, J=17.6, 5.9 and 2.0 Hz, 1H), 3.20 (m, 1H), 3.81 (s, 3H), 4.38 (dt, J=11.3 and 4.0 Hz, 1H), 4.49 (ddd, J=11.3, 4.9 and 3.9 Hz, 1H), 6.75 (s, 1H), 6.79–6.82 (m, 2H), 7.27 (t, J=7.8 Hz, 1H); ¹³C NMR (CDCl₃) δ 30.23, 37.44, 37.46, 55.25, 68.61, 112.13, 112.70, 118.69, 130.03, 144.48, 160.05, 170.63. Anal. calcd for C₁₂H₁₄O₃: C, 69.88; H, 6.84. Found: C, 70.04; H, 6.87.

3.21. 4-(2-Naphthyl)tetrahydro-2H-pyran-2-one 6ar

 1 H NMR (CDCl₃) δ 2.08–2.16 (m, 1H), 2.23–2.26 (m, 1H), 2.74 (dd, J=17.6 and 10.8 Hz, 1H), 2.99 (ddd, J=17.6, 5.9 and 1.1 Hz, 1H), 3.39 (m, 1H), 4.41 (dt, J=10.2 and 3.5 Hz, 1H), 4.50–4.54 (m, 1H), 7.33 (d, J=8.8 Hz, 1H), 7.47–7.51 (m, 2H), 7.63 (s, 1H), 7.80–7.85 (m, 3H); 13 C NMR (CDCl₃) δ 30.18, 37.30, 37.43, 68.53, 124.76, 124.79, 125.95, 126.44, 127.61, 127.66, 128.80, 132.47, 133.40, 140.04, 170.59. Anal. calcd for C₁₅H₁₄O₂: C, 79.62; H, 6.24. Found: C, 79.35; H, 6.38.

3.22. 4-(Phenyl)tetrahydro-2-furanone 6bm

¹H NMR (CDCl₃) δ 2.68 (dd, J=17.6 and 9.1 Hz, 1H), 2.93 (dd, J=17.6 and 8.8 Hz, 1H), 3.79 (br quint, J=8.4 Hz, 1H), 4.27 (t, J=8.6 Hz, 1H), 4.67 (t, J=8.6 Hz, 1H), 7.23 (d, J=7.4 Hz, 2H), 7.30 (t, J=7.3 Hz, 1H), 7.37 (t, J=7.3 Hz, 2H); ¹³C NMR (CDCl₃) δ 35.65, 41.05, 73.99, 126.65, 127.67, 129.10, 139.38, 176.35.

3.23. Hydrolysis of 3em and 3fm

Methanol (1.5 mL) was added to a flask charged with a sample of **3em** (41 mg, 0.18 mmol) and flushed with nitrogen, which is followed by addition of 40% aq. KOH (0.3 mL). The resulting mixture was then stirred at 85°C for 16 h. To the reaction mixture was added 10% aq. HCl (15 mL). After evaporation of the solvent, the residue was dissolved in ethyl acetate. The solution was washed with saturated aqueous

sodium chloride and dried over anhydrous MgSO₄. By evaporation of the solvent, (S)-(-)-3-phenyl-4-methylpentanoic acid **4e** was obtained in 90% yield. (R)-(-)-3-Phenylheptanoic acid **4f** was obtained quantitatively from **3fm** in a similar manner. The specific rotation data for the esters and acids are shown in the text.

Acknowledgements

This work was supported by the 'Research for the Future' Program, the Japan Society for the Promotion of Science, and a Grant-in-Aid for Scientific Research, the Ministry of Education, Japan.

References

- 1. For reviews, see: (a) Schmalz, H.-G. In *Comprehensive Organic Synthesis*; Trost, B. M.; Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 4, Chapter 1.5. (b) Rossiter, B. E.; Swingle, N. M. *Chem. Rev.* **1992**, *92*, 771.
- Examples of stoichiometric asymmetric 1,4-addition to α,β-unsaturated esters: (a) Suzuki, I.; Kin, H.; Yamamoto, Y. J. Am. Chem. Soc. 1993, 115, 10139. (b) Sakai, K.; Suemune, H. Tetrahedron: Asymmetry 1993, 4, 2109. (c) Tanaka, F.; Node, M.; Tanaka, K.; Mizuchi, M.; Hosoi, S.; Nakayama, M.; Taga, T.; Fuji, K. J. Am. Chem. Soc. 1995, 117, 12159. (d) Asano, Y.; Iida, A.; Tomioka, K. Tetrahedron Lett. 1997, 38, 8973. (e) Frey, L. F.; Tillyer, R. D.; Caille, A. S.; Tschaen, D. M.; Dolling, U. H.; Grabowski, E. J. J.; Reider, P. J. J. Org. Chem. 1998, 63, 3120. (f) Xu, F.; Tillyer, R. D.; Tschaen, D. M.; Grabowski, E. J. J.; Reider, P. J. Tetrahedron: Asymmetry 1998, 9, 1651.
- (a) Tomioka, K.; Shindo, M.; Koga, K. Tetrahedron Lett. 1993, 34, 681. (b) Kumamoto, T.; Aoki, S.; Nakajima, M.; Koga, K. Tetrahedron: Asymmetry 1994, 5, 1431. (c) Tomioka, K.; Kanai, M. Tetrahedron Lett. 1995, 36, 4275. (d) Asano, Y.; Iida, A.; Tomioka, K. Chem. Pharm. Bull. 1998, 46, 184. (e) Versleijen, J. P. G.; van Leusen, A. M.; Feringa, B. L. Tetrahedron Lett. 1999, 40, 5803. (f) Kanai, M.; Nakagawa, Y.; Tomioka, K. Tetrahedron 1999, 55, 3843.
- 4. Sakai, M.; Hayashi, H.; Miyaura, N. Organometallics 1997, 16, 4229.
- 5. Takaya, Y.; Ogasawara, M.; Hayashi, T.; Sakai, M.; Miyaura, N. J. Am. Chem. Soc. 1998, 120, 5579.
- 6. Takaya, Y.; Ogasawara, M.; Hayashi, T. Tetrahedron Lett. 1998, 39, 8479.
- 7. Takaya, Y.; Ogasawara, M.; Hayashi, T. Tetrahedron Lett. 1999, 40, 6957.
- 8. (a) Mukaiyama, T.; Iwasawa, N. Chem. Lett. **1981**, 913. (b) Touet, J.; Baudouin, S.; Brown, E. Tetrahedron: Asymmetry **1992**, 3, 587.
- 9. (a) Irwin, A. J.; Jones, J. B. J. Am. Chem. Soc. 1977, 99, 556. (b) Lawston, I. W.; Inch, T. D. J. Chem. Soc., Perkin Trans. I 1983, 2629.
- 10. Ozawa, F.; Kubo, A.; Matsumoto, Y.; Hayashi, T. Organometallics 1993, 12, 4188.
- 11. Cramer, R. Inorg. Synth. 1974, 15, 16.
- 12. (a) Takaya, H.; Akutagawa, S.; Noyori, R. *Org. Synth.* **1989**, *67*, 20. (b) Cai, D.; Payack, J. F.; Bender, D. R.; Hughes, D. L.; Verhoeven, T. R.; Reider, P. J. *J. Org. Chem.* **1994**, *59*, 7180.
- 13. (a) Brown, H. C.; Cole, T. E. Organometallics 1983, 2, 1316. (b) Hawthorene, M. F. J. Am. Chem. Soc. 1958, 80, 4291.